skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sharma, Anuj"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learned olfactory-guided navigation is a powerful platform for studying how a brain generates goal-directed behaviors. However, the quantitative changes that occur in sensorimotor transformations and the underlying neural circuit substrates to generate such learning-dependent navigation is still unclear. Here we investigate learned sensorimotor processing for navigation in the nematodeCaenorhabditis elegansby measuring and modeling experience-dependent odor and salt chemotaxis. We then explore the neural basis of learned odor navigation through perturbation experiments. We develop a novel statistical model to characterize how the worm employs two behavioral strategies: a biased random walk and weathervaning. We infer weights on these strategies and characterize sensorimotor kernels that govern them by fitting our model to the worm’s time-varying navigation trajectories and precise sensory experiences. After olfactory learning, the fitted odor kernels reflect how appetitive and aversive trained worms up- and down-regulate both strategies, respectively. The model predicts an animal’s past olfactory learning experience with  > 90%accuracy given finite observations, outperforming a classical chemotaxis metric. The model trained on natural odors further predicts the animals’ learning-dependent response to optogenetically induced odor perception. Our measurements and model show that behavioral variability is altered by learning—trained worms exhibit less variable navigation than naive ones. Genetically disrupting individual interneuron classes downstream of an odor-sensing neuron reveals that learned navigation strategies are distributed in the network. Together, we present a flexible navigation algorithm that is supported by distributed neural computation in a compact brain. 
    more » « less
  2. An animal’s current behavior influences its response to sensory stimuli, but the molecular and circuitlevel mechanisms of this context-dependent decision-making are not well understood. Caenorhabditis elegans are less likely to respond to a mechanosensory stimulus by reversing if the stimuli is received while the animal turns. Inhibitory feedback from turning associated neurons are needed for this gating. But until now, it has remained unknown precisely where in the circuit gating occurs and which specific neurons and receptors receive inhibition from the turning circuitry. Here, we use genetic manipulations, single-cell rescue experiments, and high-throughput closed-loop optogenetic perturbations during behavior to reveal the specific neuron and receptor responsible for receiving inhibition and altering sensorimotor processing. Our measurements show that an inhibitory acetylcholine-gated chloride channel comprising LGC-47 and ACC-1 expressed in neuron type RIM disrupts mechanosensory evoked reversals during turns, presumably in response to inhibitory signals from turning-associated neuron SAA. 
    more » « less
  3. Kim, K (Ed.)
    Abstract Genetically encoded optical indicators and actuators of neural activity allow for all-optical investigations of signaling in the nervous system. But commonly used indicators, actuators, and expression strategies are poorly suited for systematic measurements of signal propagation at brain scale and cellular resolution. Large-scale measurements of the brain require indicators and actuators with compatible excitation spectra to avoid optical crosstalk. They must be highly expressed in every neuron but at the same time avoid lethality and permit the animal to reach adulthood. Their expression must also be compatible with additional fluorescent labels to locate and identify neurons, such as those in the NeuroPAL cell identification system. We present TWISP, a transgenic worm for interrogating signal propagation, that addresses these needs and enables optical measurements of evoked calcium activity at brain scale and cellular resolution in the nervous system of the nematode Caenorhabditis elegans. In every neuron we express a nonconventional optical actuator, the gustatory receptor homolog GUR-3 + PRDX-2, under the control of a drug-inducible system QF + hGR, and a calcium indicator GCAMP6s, in a background with additional fluorophores from the NeuroPAL cell ID system. We show that this combination, but not others tested, avoids optical crosstalk, creates strong expression in the adult, and generates stable transgenic lines for systematic measurements of signal propagation in the worm brain. 
    more » « less
  4. Abstract Establishing how neural function emerges from network properties is a fundamental problem in neuroscience1. Here, to better understand the relationship between the structure and the function of a nervous system, we systematically measure signal propagation in 23,433 pairs of neurons across the head of the nematodeCaenorhabditis elegansby direct optogenetic activation and simultaneous whole-brain calcium imaging. We measure the sign (excitatory or inhibitory), strength, temporal properties and causal direction of signal propagation between these neurons to create a functional atlas. We find that signal propagation differs from model predictions that are based on anatomy. Using mutants, we show that extrasynaptic signalling not visible from anatomy contributes to this difference. We identify many instances of dense-core-vesicle-dependent signalling, including on timescales of less than a second, that evoke acute calcium transients—often where no direct wired connection exists but where relevant neuropeptides and receptors are expressed. We propose that, in such cases, extrasynaptically released neuropeptides serve a similar function to that of classical neurotransmitters. Finally, our measured signal propagation atlas better predicts the neural dynamics of spontaneous activity than do models based on anatomy. We conclude that both synaptic and extrasynaptic signalling drive neural dynamics on short timescales, and that measurements of evoked signal propagation are crucial for interpreting neural function. 
    more » « less
  5. Sengupta, Piali (Ed.)
    Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously, we developed high-throughput methods to probe neural activity in populations ofCaenorhabditis elegansand discovered that the animal’s mechanosensory processing is rapidly modulated by the animal’s locomotion. Specifically, we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here, we report thatC.elegansuse inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB, and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude thatC.elegansrely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas. 
    more » « less